
Generative Image as Action Models

Mohit Shridhar1,∗, Yat Long Lo1,∗, Stephen James1
1Dyson Robot Learning Lab, ∗Equal Contribution

genima-robot.github.io

hang the scarf
on the stand

lift the lid off
the saucepan

put the marker
in the mug

touch the button
with your elbow

slide the book
and pick it up

lift the
transparent bag

open the boxpick up the red cup slide the block flip up the toilet seat move the hanger pull the microwave door

target
base

target
elbow

target
wrist

target
gripper

Abstract: Image-generation diffusion models have been fine-tuned to unlock new
capabilities such as image-editing and novel view synthesis. Can we similarly
unlock image-generation models for visuomotor control? We present GENIMA, a
behavior-cloning agent that fine-tunes Stable Diffusion to “draw joint-actions” as
targets on RGB images. These images are fed into a controller that maps the visual
targets into a sequence of joint-positions. We study GENIMA on 25 RLBench and
9 real-world manipulation tasks. We find that, by lifting actions into image-space,
internet pre-trained diffusion models can generate policies that outperform state-
of-the-art visuomotor approaches, especially in robustness to scene perturbations
and generalizing to novel objects. Our method is also competitive with 3D agents,
despite lacking priors such as depth, keypoints, or motion-planners.

Keywords: Diffusion Models, Image Generation, Behavior Cloning, Visuomotor

1 Introduction

Image-generation diffusion models [1, 2, 3] are generalists in producing visual-patterns. From
photo-realistic images [4] to abstract art [5], diffusion models can generate high-fidelity images
by distilling massive datasets of captioned images [6]. Moreover, if both inputs and outputs are in
image-space, these models can be fine-tuned to unlock new capabilities such as image-editing [7, 8],
semantic correspondences [9, 10], or novel view synthesis [11, 12]. Can we similarly unlock image-
generation models for generating robot actions?

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://genima-robot.github.io/

SD-Turbo
with ControlNet Controller

Tiled RGB Targets Joint Positions

“open the box”

“open the box”

(1) (2)

...

draws targets
reaches targets

Figure 1. GENIMA Overview. GENIMA is a behavior-cloning agent that maps multi-view RGB observations and language goals to joint-
position actions. GENIMA is composed of two stages: (1) SD-Turbo [27] is fine-tuned with ControlNet [8] to draw target joint-positions,
which are from the t+K timestep in expert demonstrations. Each joint is rendered as a uniquely colored sphere. (2) The generated targets are
input into an ACT [19, 23] controller, which translates them into a sequence of K joint-positions. The controller is trained to ignore background
context by using random backgrounds (see Figure 2). Both stages are trained independently and used sequentially during inference.

Prior works in robotics have used image-generation for subgoal generation [13, 14, 15, 16], data-
augmentation [17, 18, 19], and features-extraction for 3D agents [20, 21]. Subgoal generation pre-
dicts goal images as targets, however, producing exact pixel-level details about interactions with de-
formable objects, granular media, and other chaotic systems, is often infeasible. Data-augmentation
methods randomize scenes with image-generation outputs to improve robustness to lighting, tex-
tures, and distractors, but they do not use image-generation models to directly generate actions. 3D
agents use pre-trained features from diffusion models to improve generalization, however, they rely
on privileged information such as depth, keypoints, task-specific scene bounds, and motion-planners.

In this work, we use image-generation models in their native formulation: drawing images. We
present GENIMA, a multi-task behavior-cloning agent that directly fine-tunes Stable Diffusion [1]
to “draw joint-actions”. To supervise the fine-tuning, we format expert demonstrations into an
image-to-image dataset. The input is an RGB image with a language goal, and the output is the
same image with joint-position targets from a future timestep in the demonstration. The targets are
rendered as colored spheres for each joint (as shown in the previous page). These visual targets
are fed into a controller that maps them to a sequence of joint-positions. This formulation frames
action-generation as an image-generation problem such that action-patterns become visual-patterns.

We study GENIMA on 25 simulated and 9 real-world tasks. In RLBench [22], GENIMA outperforms
state-of-the-art visuomotor approaches such as ACT [19, 23] in 16/25 tasks, and DiffusionPoli-
cies [24] in 25/25 tasks. More than task performance, we show that GENIMA is robust to scene
perturbations like randomized object colors, distractors, and lighting changes, and also in generaliz-
ing to novel objects. We find that RGB-to-joint methods can approach the performance of privileged
3D next-best-pose methods [25, 26] without using priors like depth, keypoints, or motion-planners.
We validate these results with real-world tasks that involve dynamic motions, full-body control,
transparent and deformable objects. In summary, our contributions are:

• A novel problem-formulation that frames joint-action generation as image-generation.

• A proof-of-concept system for drawing and executing joint-actions.

• Empirical results and insights from simulated and real-world experiments.

Our code and pre-trained checkpoints are available at genima-robot.github.io.

2 GENIMA

GENIMA is a behavior-cloning agent that maps RGB observations Ot and a language goal g to
joint-position actions Ajoints

t . The key objective is to lift actions into image-space such that internet-
pretrained diffusion models can learn action-patterns as visual-patterns. This is accomplished
through a two-stage process: (1) fine-tuning Stable Diffusion [1] to draw target joint-positions Aimage

t+K

on input images, K timesteps ahead, and (2) training a controller to translate these targets into to
a sequence of executable joint-positions Ajoints

t = {at1 ,at2 ... atK}. This simple two-stage process
offloads semantic and task-level reasoning to a generalist image-generation model, while the con-
troller reaches nearby joint-positions indicated by the visual targets. The sections below describe
the two stages in detail, and Figure 1 provides an overview.

2

https://genima-robot.github.io/

2.1 Diffusion Agent
The diffusion agent controls what to do next. The agent takes language goal g and multi-view RGB
images Ot as input, and outputs target joint-positions Aimage

t+K on the same images. This problem
formulation is a classic image-to-image setting, so any fine-tuning pipeline [7, 28, 29] can be used.
We specifically use ControlNet [8] to preserve spatial-layouts and for data-efficient fine-tuning.

Fine-Tuning Data. To supervise the fine-tuning, we randomly sample observations and target
joint-positions from t + K timesteps in expert demonstrations. For that timestep, we obtain 6-
DoF poses of each robot joint, which is available through robot-APIs (from forward-kinematics).
We place spheres at those poses with pyrender1, and render them on four camera observations
Ot = {ofront

t ,owrist
t ,oleft

t ,oright
t } with known intrinsics and extrinsics. On a 7-DoF Franka Panda, we

only render four joints: base, elbow, wrist, and gripper, to avoid cluttering the image. Each
joint is represented with an identifying color, with separate colors for gripper open and close. The
spheres include horizontal stripes parallel to the joint’s rotation axis, acting as graduations indicating
the degree of rotation. Only horizontal stripes are necessary as each joint has only one rotation axis.
The stripes are also asymmetric across the poles to help identify the sphere orientation.

Fine-Tuning with ControlNet. Given an image-to-image dataset, we finetune Stable Diffusion [27]
with ControlNet [8] to draw targets on observation images. ControlNet is a two-stream architecture:
one stream with a frozen Stable Diffusion UNet that gets noisy input and language descriptions, and
a trainable second stream that gets a conditioning image to modulate the output. This architecture re-
tains the text-to-image capabilities of Stable Diffusion, while fine-tuning outputs to spatial layouts in
the conditioning image. GENIMA uses RGB observations as the conditioning image to draw precise
targets. We use SD-Turbo [27] – a distilled model that can generate high-quality images within 1 to
4 diffusion steps – as the base model for fine-tuning. We use the HuggingFace implementation [30]2

of ControlNet without modifications. See Appendix D for more details on fine-tuning.

Tiled Diffusion. Fine-tuning Stable Diffusion on robot data poses three key challenges. Firstly,
Stable Diffusion models work best with image resolutions of 512×512 or higher due to their training
data. In robotics, large images increase inference latency. Secondly, multi-view generation suffers
from inconsistencies across viewpoints. However, multi-view setups are crucial to avoid occlusions
and improve spatial-robustness. Thirdly, diffusion is quite slow, especially for generating four target
images at every timestep. Inspired by view-synthesis works [31, 32], we solve all three challenges
with a simple solution: tiling. We tile four observations of size 256 × 256 into a single image of
512× 512. Tiling generates four images at 5 Hz on an NVIDIA A100 or 4 Hz on an RTX 3090.

2.2 Controller

The controller translates target images Aimage
t+K into executable joint-positions Ajoints

t . The controller
can be implemented with any visuomotor policy that maps RGB observations to joint-positions. We
specifically use ACT [23, 33] – a Transformer-based policy architecture [34] – for its fast inference-
speed and training stability. However, in theory, any framework like Diffusion Policies [24] or
RL-based methods [35] can be used. Even classical controllers can be used if pose-estimates of
target spheres are provided, but in our implementation, we opt for learned controllers for simplicity.

training inference
Figure 2. During training, the controller’s
input are ground-truth targets with random
backgrounds (left). During inference, the tar-
gets are from the diffusion agent (right).

Training. During training, the controller receives current joint-
positions, the language goal, and RGB images with ground-truth
targets overlaid on random backgrounds. The random back-
grounds, as shown in Figure 2, force ACT to follow targets and
ignore any contextual information in the scene. We use the same
hyperparameters and settings from the original ACT codebase3

with minor modifications. To improve robustness to fuzzy diffu-
sion outputs, we augment images with random-crops [36], color

1https://pyrender.readthedocs.io/en/latest/examples/quickstart.html
2https://huggingface.co/docs/diffusers/en/using-diffusers/controlnet
3https://github.com/tonyzhaozh/act

3

https://pyrender.readthedocs.io/en/latest/examples/quickstart.html
https://huggingface.co/docs/diffusers/en/using-diffusers/controlnet
https://github.com/tonyzhaozh/act

jitters, elastic transforms, and Gaussian noise. We use L1 loss for joint-actions, and cross-entropy
loss for gripper open and close actions. For language-conditioning, we use FiLM [37] layers follow-
ing MT-ACT [19]. The controller is trained independently from the diffusion agent. See Appendix F
for hyperparameters and Appendix E for controller details.

Inference. During inference, the controller gets target images from the diffusion agent. The con-
troller predicts a sequence of K joint-actions, and executes K actions or less before querying the
diffusion agent in a closed-loop fashion. The controller runs at ∼ 50 Hz on an NVIDIA RTX 3090.

3 Experiments

We study GENIMA in both simulated and real-world environments. Specifically, we are interested
in answering the following questions:

§ 3.1 How does GENIMA compare against state-of-art visuomotor policies and 3D baselines?

§ 3.2 What are the benefits of drawing actions with internet-pretrained image-generation models?

§ 3.3 Which factors affect GENIMA’s performance?

§ 3.4 How well does GENIMA perform on real-world tasks?

We start with benchmarking our method in simulated environments for reproducible and fair com-
parisons. The following sections describe our simulation setup and evaluation methodology.

Simulation Setup. All simulated experiments are set in CoppeliaSim [38] interfaced through
PyRep [39]. The robot is a 7-DoF Franka Emika Panda placed behind a tabletop. Observations are
captured from four RGB cameras: front, left shoulder, right shoulder, and wrist, each
with a resolution of 256×256. The robot is commanded with joint-position actions via PID control,
or end-effector actions via an IK solver.

25 RLBench Tasks. We choose 25 (out of 100) tasks from RLBench [22]. While most RLBench
tasks are suited for discrete, quasi-static motions that benefit 3D next-best-pose agents [25, 26],
we pick tasks that are difficult to execute with end-effector control. Tasks such as open box and
open microwave require smooth non-linear motions that sampling-based motion-planners and IK
solvers struggle with. Each RLBench task includes several variations, but we only use variation0
to reduce training time with limited resources. However, our method should be applicable to multi-
variation settings without any modifications. We generate two datasets: 50 training demos and
50 evaluation episodes per task. For both datasets, objects are placed randomly, and each episode
is sanity-checked for solvability. Language goals are constructed from instruction templates. See
Appendix A for details on individual tasks.

Evaluation Metric. Multi-task agents are trained on all 25 tasks, and evaluated individually on
each task. Scores are either 0 for failures or 100 for successes, with no partial successes. We report
average success rates on 50 evaluation episodes across the last three epoch checkpoints: 50×3 = 150
episodes per task, which adds up to 150 × 25 = 3750 in total. We use a single set of checkpoints
for all tasks without any task-specific optimizations or cherry-picking.

Visuomotor Baselines. We benchmark GENIMA against three state-of-the-art visuomotor ap-
proaches: ACT [19, 23], DiffusionPolicies [24], and SuSIE [13]. ACT is a transformer-based policy
that has achieved compelling results in bimanual manipulation. Although GENIMA uses ACT as
the controller, our controller has never seen RGB observations from demonstrations, just sphere
targets with random backgrounds. DiffusionPolicies is a widely adopted visuomotor approach that
generates multi-modal trajectories through diffusion. SuSIE is the closest approach to GENIMA,
but instead of drawing target actions, SuSIE generates target RGB observations as goal images. We
adapt SuSIE to our setting by training a controller that maps target and current RGB observations
to joint-position actions. All multi-task baselines are conditioned with language goals. ACT and
DiffusionPolicies use FiLM conditioning [37], whereas SuSIE uses the goal as a prompt.

4

Task GENIMA ACT SuSIE Diff.
Policy

3D Diff.
Actor

basketball in hoop 50.0 32.7 5.3 0.0 100
insert usb 26.0 18.0 0.0 0.0 29.3
move hanger 94.0 42.0 21.3 0.0 76.0
open box 79.3 69.3 36.0 3.3 6.0
open door 85.3 75.3 26.6 6.7 76.7
open drawer 77.3 82.7 67.3 0.0 71.3
open grill 48.7 40.0 26.0 0.0 93.3
open microwave 46.7 22.6 10.0 0.0 58.0
open washer 46.0 22.6 2.0 2.0 82.7
open window 69.3 8.0 24.6 0.0 96.7
phone on base 18.7 13.3 1.0 2.0 94.0
pick up cup 36.0 43.3 24.6 0.7 92.7
play jenga 90.0 99.3 40.0 1.3 92.0
press switch 72.7 65.3 74.7 22.7 83.3
push button 76.7 31.3 7.3 2.7 46.7
put books on shelf 14.7 44.0 1.0 0.0 36.7
put knife on board 12.7 14.7 4.0 2.0 77.3
put rubbish in bin 26.7 15.3 6.7 0.0 96.0
scoop with spatula 11.3 22.7 1.0 0.0 66.0
slide block 12.7 22.0 0.0 0.0 99.3
take lid off 48.0 44.7 72.0 1.3 100
take plate off 21.3 37.3 4.0 0.0 72.7
toilet seat up 93.3 45.3 50.0 2.0 94.0
turn on lamp 12.0 19.3 6.0 4.0 4.0
turn tap 71.3 59.3 32.7 20.7 99.3
average 49.6 39.6 21.8 2.9 73.8

Table 1. Visuomotor and 3D Baselines on 25 RLBench tasks. Success rates
(%) for multi-task agents trained with 50 demos and evaluated on 50 episodes per
task. We report average scores across the last three checkpoints. The four methods
on the left are RGB-to-joint agents. The rightmost method is a 3D next-best-pose
agent with extra priors: depth, keypoints, scene bounds, and motion-planners.

Random Back. DP

Controller
Settings

ACT w/ SD Feat.

GENIMA

Delta Joints

Absolute EE

Delta EE
Action
Modes

Non-Tiled

SDXL-Turbo
Diffusion
Settings

No Stripes

10 actions

5 actions

1 action

Prediction
Horizon

10 actions

5 actions

1 action

Execution
Horizon

Full-Context ACT

Full-Context DP

60.0

19.8

32.5

26.7

62.9

59.9

34.4

56.4

22.9

7.3

3

35.8

26.7

5.3

Success Rate (%)

Baseline 0.0
0.0

32.2

Figure 3. Ablations and Sensitivity Analyses. We
study factors that affect GENIMA’s performance by
training a multi-task agent on 3 tasks: take lid
off, open box, and slide block. We report av-
erage success rates across the 3 tasks.

3D Baseline. We also benchmark GENIMA against 3D Diffuser Actor [40] – a state-of-the-art
agent in RLBench. 3D Diffuser Actor uses CLIP [41] to extract vision and language features, and
diffuses end-effector poses with a 3D transformer. We use 3D Diffuser Actor as the best-performing
representative of 3D next-best-pose agents [25, 26] such as PerAct [42], Hiveformer [43], RVT [44],
Act3D [45], DNAct [20], and GNFactor [21]. These works rely on several priors: depth cameras,
motion-planners to reach poses, keypoints that segment trajectories into bottlenecks, task-specific
scene bounds, and quasi-static assumption for motions.

3.1 Visuomotor and 3D Baselines
Our key result is that we show GENIMA – an image-generation model fine-tuned to draw actions –
works at all for visuomotor tasks. In the sections below, we go beyond this initial result and quantify
GENIMA’s performance against state-of-the-art visuomotor and 3D baselines.

GENIMA outpeforms ACT, DiffusionPolicies, and SuSIE. Table 1 presents results from RLBench
evaluations. GENIMA outperforms ACT [19, 23] in 16/25 tasks, particularly in tasks with occlusions
(e.g., open window) and complex motions (e.g., turn tap). Against SuSIE [13], GENIMA per-
forms better on 23/25 tasks, as SuSIE struggles to generate exact pixel-level details for goals. Dif-
fusionPolicy [24] performs poorly in multi-task settings with joint-position control. We ensured that
our implementation is correct by training DiffusionPolicy on just take lid off, which achieved a
reasonable success rate of 75%, but we could not scale it to 25 tasks.

RGB-to-joint agents approach the performance of 3D next-best-pose agents. Without 3D input
and motion-planners, most prior works [42, 46] report zero-performance for RGB-only agents in
RLBench. However, our results in Table 1 show that RGB-to-joint agents like GENIMA and ACT
can be competitive with 3D next-best-pose agents. GENIMA outperforms 3D Diffuser Actor in
6/25 tasks, particularly in tasks with non-linear trajectories (e.g., open box, open door), and tiny
objects (e.g., turn on lamp). GENIMA also performs comparably (within 3%) on 3 more tasks:
insert usb, play jenga, toilet seat up, despite lacking priors. 3D Diffuser Actor performs
better on most tasks, but training GENIMA for longer or with more data could bridge this gap.

5

Object Color Background Texture Camera Pose

GENIMA

ACT

-35%

-74%

Lighting

-18%

-39%

Distractors

-14%

-72%

Table Texture

-77%

-92%

-10%

0%

-96%

-94%

Figure 4. Performance drops from Colosseum [46] perturbations. We evaluate GENIMA and ACT on 6 perturbation categories: randomized
object and part colors, distractor objects, lighting color and brightness variations, randomized table textures, randomized backgrounds, and
camera pose changes. We report success rates from 150 evaluation episodes per task, where perturbations are randomly sampled episodically.
ACT overfits to objects and lighting conditions, whereas GENIMA is more robust to such perturbations. See supplementary video for examples.

3.2 Semantic and Spatial Generalization

While all evaluations in Section 3.1 train and test on the same environment, the key benefit of using
image-generation models is in improving generalization of visuomotor policies. In this section, we
examine semantic and spatial generalization aspects of visuomotor policies.

GENIMA is robust to semantic perturbations on Colosseum tasks. We evaluate the same multi-
task GENIMA and ACT agents (from Section 3.1) on 6 perturbation categories in Colosseum [46]:
randomized object and part colors, distractor objects, lighting color and brightness variations, ran-
domized table textures, randomized scene backgrounds, and camera pose changes. Figure 4 presents
results from these perturbation tests. Despite being initialized with a pre-trained ResNet [47], ACT
overfits and significantly drops in performance with changes to object color, distractors, lighting,
and table textures. Whereas GENIMA has minimal drops in performance from an emergent property
that reverts scenes to canonical textures and colors from the training data. See supplementary videos
for examples. However, both methods fail to generalize to unseen camera poses.

GENIMA ACT

Train

Success

Failure

Success

Failure

Figure 5. Spatial Generalization. Train and test saucepan positions (from a
top-down view of the tabletop) for evaluations on take lid off. ACT strug-
gles to extrapolate to the upper-right region, whereas GENIMA uses aligned
image-action spaces for better spatial generalization.

GENIMA extrapolates to spatial loca-
tions with aligned image-action spaces.
By drawing actions on images, GEN-
IMA keeps the image-space and action-
space aligned. This alignment has been
shown to improve spatial generalization
and data-efficiency in prior works [42, 48,
49]. We observe similar benefits in Fig-
ure 5, where ACT struggles in the upper-
right region with minimal training exam-
ples, but GENIMA succeeds in extrapolat-
ing to those locations.

3.3 Ablations and Sensitivity Analyses

We investigate factors that affect GENIMA’s performance. We report average success rates from
multi-task GENIMA trained on 3 tasks: take lid off, open box, and slide block. Our key
results are presented in Figure 3, and the sections below summarize our findings.

Absolute joint-position is the best performing action-mode. Delta action-modes accumulate er-
rors, and end-effector control through IK struggles with non-linear trajectories. Joint-position ac-
tions are also more expressive, allowing for full-body control and other embodiments.

Longer action sequence predictions are crucial. In line with prior works [23, 24], modeling
trajectory distributions requires predicting longer action sequences. We find that predicting K = 20
actions is optimal, since observations are recorded at 20Hz in RLBench.

Longer execution horizons avoid error accumulation. Shorter execution horizons lead to jerky
motions that put the robot in unfamiliar states. We find that executing all 20 actions works best.

SDXL improves performance over SD. Larger base models such as SDXL-Turbo [27] have more
capacity to model action-patterns. Newer Transformer-based models [50] might scale even better.

6

Tiled diffusion improves generation speed while keeping performance. Tiled generation of four
target images takes 0.2 seconds, whereas generating individual images takes 0.56 seconds. Both
methods achieve similar performance, however tiled generation is more multi-view consistent across
a wider set of tasks. See Appendix G for reference.

Without stripes on spheres, performance drops in half. These stripes act as graduation indicators
for joint-angles. Including stripes helps Stable Diffusion learn joint rotations as a visual-pattern.

Full-context controllers overfit to observations. Instead of random backgrounds, if controllers
are trained with target spheres overlaid on RGB observations from demos, they tend to ignore the
targets, and just use observations for action prediction. This hurts performance and generalization.

ACT works better than DiffusionPolicy as the controller. Similar to results in Section 3.1, we
find that ACT is better at joint-action prediction than DiffusionPolicy (DP). ACT also has a faster
inference speed of 0.02 seconds, whereas DiffusionPolicy takes 0.1 seconds (for 20 diffusion steps).

Figure 6. Data-Efficiency and Diffusion Speed of GENIMA.

GENIMA is data-efficient. We study
data-efficiency by constraining poses
of objects in training demos. Follow-
ing R&D [49], we sample poses in a
grid-style that maximizes workspace
coverage based on the number of de-
mos. GENIMA achieves 80% of the
peak performance with 25 demos.

GENIMA works with 5 diffusion
steps or more. With SD-Turbo [27] as the base model, GENIMA can generate target images with
just 5 diffusion steps within 0.2 seconds. Future works can use better schedulers and distillation
methods to further improve generation speed and quality.

3.4 Real-robot Evaluations In-Distribution Out-of-Distribution
Task GENIMA ACT GENIMA ACT Category

lid off 80 60 60 20 new saucepan
place teddy 100 80 100 60 new toy
elbow touch 80 40 60 40 new background
hang scarf 40 60 60 20 new scarf
put marker 40 40 40 20 moving objects
slide book 100 20 100 0 darker lighting
avoid lamp 40 0 0 0 new object
lift bag 80 60 40 40 distractors
flip cup 20 80 20 40 new cup

Table 2. Real-robot Results. Success rates of multi-task GENIMA and ACT on
9 real-world tasks, evaluated on 5 episodes per task.

We validate our results by benchmark-
ing GENIMA and ACT on a real-robot
setup. Our setup consists of a Franka
Emika Panda with 2 external and 2 wrist
cameras. We train multi-task agents from
scratch on 9 tasks with 50 demos per
task. These tasks involve dynamic be-
haviors (e.g., slide book), transparent
objects (e.g., lift bag), deformable ob-
jects (e.g., hang scarf), and full-body control (e.g., elbow touch). See Figure 7 and supplemen-
tary videos for examples. Appendix B covers task details. When comparing GENIMA and ACT, we
ensure that the initial state is exactly the same by using an image-overlay tool to position objects.
Table 2 reports average success rates from 5 evaluation episodes per task. We also report out-
of-distribution performance with unseen objects and scene perturbations. In line with Section 3.2,
GENIMA is better than ACT at generalizing to out-of-distribution tasks. GENIMA also exhibits some
recovery behavior from mistakes, but DAgger-style [51] training might improve robustness.

4 Related Work

Visuomotor agents map images to actions in an end-to-end manner [52, 53, 54]. ACT [23] uses a
transformer-based policy architecture [34] to encode ResNet [47] features and predict action-chunks.
MT-ACT [19] extends ACT to the multi-task settings with language-conditioning. MVP [55] uses
self-supervised visual pre-training on in-the-wild videos and fine-tunes for real-world robotic tasks.
Diffusion Policy [24] uses the diffusion process to learn multi-modal trajectories. RT-2 [56] fine-
tune vision-language models to predict tokenized actions. Octo [57] can be adapted to new sensory

7

(a) (b) (c) (d) (e)

Figure 7. Real-world Tasks. 5 out of 9 tasks: (a) flip cup, (b) hang scarf, (c) elbow touch, (d) lid off, and (e) slide book.

inputs and action spaces by mapping inputs into a common tokenized format. All these methods
adapt paradigms from vision and language like tokenization and pre-training for predicting actions.
In contrast, GENIMA lifts actions back into image-space to use image-generation models natively.

3D next-best-pose agents encode 3D input and output 6-DoF poses [25, 26]. These poses are
keypoints (or bottlenecks in the trajectory) that are executed with a motion-planner or IK-solver.
C2F-ARM [26] and PerAct [42] use calibrated multi-camera setups to voxelize scenes into 3D grids.
Voxel grids are computationally expensive, so Act3D [45] and 3D Diffuser Actor [40] replace voxels
with sampled 3D points. RVT [44] renders RGB-D input into orthographic projections, and detects
actions in image-space. GNFactor [21] and DNAct [20] lift Stable Diffusion features into 3D to
improve generalization. Chained Diffuser [58] and HDP [59] use diffusion-based policies as low-
level controllers to reach keypoints predicted by 3D next-best-pose agents. All these 3D next-best-
pose agents rely on several priors: depth cameras, keypoints, task-specific scene bounds, and/or
motion-planners. Whereas GENIMA is a simple RGB-to-joint agent without any of these priors.

Diffusion models for robot learning. In addition to modeling policies [60, 61, 62, 63, 64] with
diffusion [65, 66], diffusion models have been used in robot learning in various ways. This includes
offline reinforcement learning [61, 63, 67], imitation-learning [68, 69, 70], subgoal generation [16,
71, 72], and planning [58, 59, 73, 74, 75, 76]. Others include affordance prediction [77], skill
acquisition [78, 79] and chaining [80], reward functions [81], grasping [82], and sim-to-real [83].

Image-generation models in robot learning have been used for out-of-distribution data genera-
tion [69], and video-conditioned policies [15, 84, 85]. ROSIE [18] and GenAug [17] use image-
generation outputs to augment datasets. SuSIE [13], RT-Sketch [86], and RT-Trajectory [87], condi-
tion policies on goals generated by image generation models in the form of observations, observation
sketches, and trajectory sketches, respectively. GENIMA does not use image-generation models to
generate observations, videos, or trajectories, but instead draws joint-actions as targets.

Representing actions in images has been shown to improve spatial-robustness and generalization.
PIVOT [88] annotates observations with markers to query vision-language models for end-effector
actions. RoboTap [89], ATM [90], and Track2Act [91] track dense points on images to learn end-
effector policies. R&D [49] renders grippers on images to aid the diffusion process. Yang et al. [92]
plan by in-painting navigation actions. C3DM [93] iteratively zooms-into images to predict 6-DoF
poses. In comparison, GENIMA does not track points, and learns joint-actions in image-space.

5 Conclusion and Limitations

We presented GENIMA, a multi-task agent that fine-tunes Stable Diffusion to draw joint-actions.
Our experiments both in simulation and real-world tasks indicate that fine-tuned image-generation
models are effective in visuomotor control. While this paper is a proof-of-concept, GENIMA could
be adapted to other embodiments, and also to draw physical attributes like forces and accelerations.

GENIMA is quite capable, but not without limitations. Like all BC-agents, GENIMA only distills ex-
pert behaviors and does not discover new behaviors. GENIMA also uses camera calibration to render
targets, assuming the robot is always visible from some viewpoint. We discuss these limitations and
offer potential solutions in Appendix J. But overall, we are excited about the potential of pre-trained
diffusion models in revolutionizing robotics, akin to how they revolutionized image-generation.

8

Acknowledgments

Big thanks to the members of the Dyson Robot Learning Lab for discussions and infrastructure
help: Abdi Abdinur, Nic Backshall, Nikita Chernyadev, Iain Haughton, Yunfan Lu, Xiao Ma, Sumit
Patidar, Younggyo Seo, Sridhar Sola, Eugene Teoh, Jafar Uruç, and Vitalis Vosylius. Special thanks
to Tony Z. Zhao and Cheng Chi for open-sourcing ACT and Diffusion Policies, and the HuggingFace
Team for diffusers.

References
[1] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-

thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[2] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International conference on machine learning, pages
8821–8831. Pmlr, 2021.

[3] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion: Text-to-3d using 2d diffu-
sion. arXiv preprint arXiv:2209.14988, 2022.

[4] A. Gupta, L. Yu, K. Sohn, X. Gu, M. Hahn, L. Fei-Fei, I. Essa, L. Jiang, and J. Lezama.
Photorealistic video generation with diffusion models. arXiv preprint arXiv:2312.06662,
2023.

[5] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rom-
bach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023.

[6] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

[7] T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing
instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18392–18402, 2023.

[8] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3836–3847, 2023.

[9] L. Tang, M. Jia, Q. Wang, C. P. Phoo, and B. Hariharan. Emergent correspondence from
image diffusion. Advances in Neural Information Processing Systems, 36:1363–1389, 2023.

[10] E. Hedlin, G. Sharma, S. Mahajan, H. Isack, A. Kar, A. Tagliasacchi, and K. M. Yi. Un-
supervised semantic correspondence using stable diffusion. Advances in Neural Information
Processing Systems, 36, 2024.

[11] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and C. Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9298–9309, 2023.

[12] Y. Shi, P. Wang, J. Ye, M. Long, K. Li, and X. Yang. Mvdream: Multi-view diffusion for 3d
generation. arXiv preprint arXiv:2308.16512, 2023.

[13] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-
shot robotic manipulation with pretrained image-editing diffusion models. arXiv preprint
arXiv:2310.10639, 2023.

9

[14] Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet, T. Yu, P. Abbeel, J. B.
Tenenbaum, et al. Video language planning. arXiv preprint arXiv:2310.10625, 2023.

[15] Y. Du, S. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel.
Learning universal policies via text-guided video generation. Advances in Neural Information
Processing Systems, 36, 2024.

[16] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models
to robotics. IEEE Robotics and Automation Letters, 2023.

[17] Z. Chen, S. Kiami, A. Gupta, and V. Kumar. Genaug: Retargeting behaviors to unseen
situations via generative augmentation. arXiv preprint arXiv:2302.06671, 2023.

[18] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,
B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint
arXiv:2302.11550, 2023.

[19] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:
Generalization and efficiency in robot manipulation via semantic augmentations and action
chunking. arXiv preprint arXiv:2309.01918, 2023.

[20] G. Yan, Y.-H. Wu, and X. Wang. Dnact: Diffusion guided multi-task 3d policy learning.
arXiv preprint arXiv:2403.04115, 2024.

[21] Y. Ze, G. Yan, Y.-H. Wu, A. Macaluso, Y. Ge, J. Ye, N. Hansen, L. E. Li, and X. Wang. Gn-
factor: Multi-task real robot learning with generalizable neural feature fields. In Conference
on Robot Learning, pages 284–301. PMLR, 2023.

[22] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[23] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[24] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[25] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic
manipulation. IEEE Robotics and Automation Letters, 7(2):1612–1619, 2022.

[26] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient
learning for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13739–13748, 2022.

[27] A. Sauer, D. Lorenz, A. Blattmann, and R. Rombach. Adversarial diffusion distillation. arXiv
preprint arXiv:2311.17042, 2023.

[28] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, and Y. Shan. T2i-adapter: Learning adapters
to dig out more controllable ability for text-to-image diffusion models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 4296–4304, 2024.

[29] H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

[30] P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul, M. Davaadorj, D. Nair,
S. Paul, W. Berman, Y. Xu, S. Liu, and T. Wolf. Diffusers: State-of-the-art diffusion models.
https://github.com/huggingface/diffusers, 2022.

[31] M. Zhao, C. Zhao, X. Liang, L. Li, Z. Zhao, Z. Hu, C. Fan, and X. Yu. Efficientdreamer:
High-fidelity and robust 3d creation via orthogonal-view diffusion prior. arXiv preprint
arXiv:2308.13223, 2023.

10

https://github.com/huggingface/diffusers

[32] J. Li, H. Tan, K. Zhang, Z. Xu, F. Luan, Y. Xu, Y. Hong, K. Sunkavalli, G. Shakhnarovich,
and S. Bi. Instant3d: Fast text-to-3d with sparse-view generation and large reconstruction
model. arXiv preprint arXiv:2311.06214, 2023.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[34] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers. In European conference on computer vision, pages 213–
229. Springer, 2020.

[35] P. Arm, M. Mittal, H. Kolvenbach, and M. Hutter. Pedipulate: Enabling manipulation skills
using a quadruped robot’s leg. arXiv preprint arXiv:2402.10837, 2024.

[36] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[37] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with
a general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[38] E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly v-rep): a versatile and
scalable robot simulation framework. In Proc. of The International Conference on Intelligent
Robots and Systems (IROS), 2013. www.coppeliarobotics.com.

[39] S. James, M. Freese, and A. J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176, 2019.

[40] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d
scene representations. arXiv preprint arXiv:2402.10885, 2024.

[41] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language super-
vision. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[42] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[43] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven
history-aware policies for robotic manipulations. In Conference on Robot Learning, pages
175–187. PMLR, 2023.

[44] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer
for 3d object manipulation. In Conference on Robot Learning, pages 694–710. PMLR, 2023.

[45] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki. Act3d: Infinite resolution action
detection transformer for robotic manipulation. arXiv preprint arXiv:2306.17817, 2023.

[46] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. The colos-
seum: A benchmark for evaluating generalization for robotic manipulation. arXiv preprint
arXiv:2402.08191, 2024.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[48] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic
manipulation. In Conference on Robot Learning, pages 726–747. PMLR, 2021.

11

[49] V. Vosylius, Y. Seo, J. Uruç, and S. James. Render and diffuse: Aligning image and action
spaces for diffusion-based behaviour cloning, 2024.

[50] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. arXiv
preprint arXiv:2403.03206, 2024.

[51] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[52] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[53] S. James and E. Johns. 3d simulation for robot arm control with deep q-learning. NIPS 2016
Workshop (Deep Learning for Action and Interaction), 2016.

[54] S. James, A. J. Davison, and E. Johns. Transferring end-to-end visuomotor control from
simulation to real world for a multi-stage task. In Conference on Robot Learning, pages
334–343. PMLR, 2017.

[55] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot
learning with masked visual pre-training. In Conference on Robot Learning, pages 416–426.
PMLR, 2023.

[56] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[57] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

[58] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki. Chaineddiffuser: Uni-
fying trajectory diffusion and keypose prediction for robotic manipulation. In 7th Annual
Conference on Robot Learning, 2023.

[59] X. Ma, S. Patidar, I. Haughton, and S. James. Hierarchical diffusion policy for kinematics-
aware multi-task robotic manipulation. arXiv preprint arXiv:2403.03890, 2024.

[60] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning, pages 3766–3777. PMLR, 2023.

[61] W. Li, X. Wang, B. Jin, and H. Zha. Hierarchical diffusion for offline decision making. In
International Conference on Machine Learning, pages 20035–20064. PMLR, 2023.

[62] X. Li, V. Belagali, J. Shang, and M. S. Ryoo. Crossway diffusion: Improving diffusion-based
visuomotor policy via self-supervised learning. arXiv preprint arXiv:2307.01849, 2023.

[63] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[64] X. Liu, F. Weigend, Y. Zhou, and H. B. Amor. Enabling stateful behaviors for diffusion-based
policy learning. arXiv preprint arXiv:2404.12539, 2024.

[65] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256–2265. PMLR, 2015.

12

[66] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[67] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional genera-
tive modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[68] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-
based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[69] X. Zhang, M. Chang, P. Kumar, and S. Gupta. Diffusion meets dagger: Supercharging eye-
in-hand imitation learning. arXiv preprint arXiv:2402.17768, 2024.

[70] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[71] C. Chen, F. Deng, K. Kawaguchi, C. Gulcehre, and S. Ahn. Simple hierarchical planning
with diffusion. arXiv preprint arXiv:2401.02644, 2024.

[72] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Language-
guided creation of physically-valid structures using unseen objects. arXiv preprint
arXiv:2211.04604, 2022.

[73] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible
behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[74] Z. Liang, Y. Mu, M. Ding, F. Ni, M. Tomizuka, and P. Luo. Adaptdiffuser: Diffusion models
as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

[75] Z. Liang, Y. Mu, H. Ma, M. Tomizuka, M. Ding, and P. Luo. Skilldiffuser: Interpretable
hierarchical planning via skill abstractions in diffusion-based task execution. arXiv preprint
arXiv:2312.11598, 2023.

[76] Z. Wang, T. Oba, T. Yoneda, R. Shen, M. Walter, and B. C. Stadie. Cold diffusion on the
replay buffer: Learning to plan from known good states. In Conference on Robot Learning,
pages 3277–3291. PMLR, 2023.

[77] Y. Ye, X. Li, A. Gupta, S. De Mello, S. Birchfield, J. Song, S. Tulsiani, and S. Liu. Af-
fordance diffusion: Synthesizing hand-object interactions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 22479–22489, 2023.

[78] L. Chen, S. Bahl, and D. Pathak. Playfusion: Skill acquisition via diffusion from language-
annotated play. In Conference on Robot Learning, pages 2012–2029. PMLR, 2023.

[79] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song. Xskill: Cross embodiment skill discovery. In
Conference on Robot Learning, pages 3536–3555. PMLR, 2023.

[80] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill
planning with diffusion models. In Conference on Robot Learning, pages 2905–2925. PMLR,
2023.

[81] F. Nuti, T. Franzmeyer, and J. F. Henriques. Extracting reward functions from diffusion
models. Advances in Neural Information Processing Systems, 36, 2024.

[82] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki. Se (3)-diffusionfields: Learning smooth cost
functions for joint grasp and motion optimization through diffusion. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 5923–5930. IEEE, 2023.

[83] Y. Li, Z. Wu, H. Zhao, T. Yang, Z. Liu, P. Shu, J. Sun, R. Parasuraman, and T. Liu. Aldm-
grasping: Diffusion-aided zero-shot sim-to-real transfer for robot grasping. arXiv preprint
arXiv:2403.11459, 2024.

13

[84] H. He, C. Bai, L. Pan, W. Zhang, B. Zhao, and X. Li. Large-scale actionless video pre-training
via discrete diffusion for efficient policy learning. arXiv preprint arXiv:2402.14407, 2024.

[85] A. Ajay, S. Han, Y. Du, S. Li, A. Gupta, T. Jaakkola, J. Tenenbaum, L. Kaelbling, A. Srivas-
tava, and P. Agrawal. Compositional foundation models for hierarchical planning. Advances
in Neural Information Processing Systems, 36, 2024.

[86] P. Sundaresan, Q. Vuong, J. Gu, P. Xu, T. Xiao, S. Kirmani, T. Yu, M. Stark, A. Jain, K. Haus-
man, D. Sadigh, J. Bohg, and S. Schaal. Rt-sketch: Goal-conditioned imitation learning from
hand-drawn sketches, 2024.

[87] J. Gu, S. Kirmani, P. Wohlhart, Y. Lu, M. G. Arenas, K. Rao, W. Yu, C. Fu, K. Gopalakrish-
nan, Z. Xu, et al. Rt-trajectory: Robotic task generalization via hindsight trajectory sketches.
arXiv preprint arXiv:2311.01977, 2023.

[88] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta, A. Xie, D. Driess, A. Wahid,
Z. Xu, et al. Pivot: Iterative visual prompting elicits actionable knowledge for vlms. arXiv
preprint arXiv:2402.07872, 2024.

[89] M. Vecerik, C. Doersch, Y. Yang, T. Davchev, Y. Aytar, G. Zhou, R. Hadsell, L. Agapito, and
J. Scholz. Robotap: Tracking arbitrary points for few-shot visual imitation. arXiv preprint
arXiv:2308.15975, 2023.

[90] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling
for policy learning. arXiv preprint arXiv:2401.00025, 2023.

[91] H. Bharadhwaj, R. Mottaghi, A. Gupta, and S. Tulsiani. Track2act: Predicting point
tracks from internet videos enables diverse zero-shot robot manipulation. arXiv preprint
arXiv:2405.01527, 2024.

[92] C.-F. Yang, H. Xu, T.-L. Wu, X. Gao, K.-W. Chang, and F. Gao. Planning as in-painting:
A diffusion-based embodied task planning framework for environments under uncertainty.
arXiv preprint arXiv:2312.01097, 2023.

[93] V. Saxena, Y. Koga, and D. Xu. Constrained-context conditional diffusion models for imita-
tion learning. arXiv preprint arXiv:2311.01419, 2023.

[94] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manip-
ulation. In Conference on robot learning, pages 894–906. PMLR, 2022.

[95] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[96] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine. Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

[97] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

[98] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pages 234–241. Springer, 2015.

[99] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and S. Birchfield.
Camera-to-robot pose estimation from a single image. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 9426–9432. IEEE, 2020.

14

[100] A. Kodaira, C. Xu, T. Hazama, T. Yoshimoto, K. Ohno, S. Mitsuhori, S. Sugano, H. Cho,
Z. Liu, and K. Keutzer. Streamdiffusion: A pipeline-level solution for real-time interactive
generation. arXiv preprint arXiv:2312.12491, 2023.

[101] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,
S. Joty, and N. Naik. Diffusion model alignment using direct preference optimization. arXiv
preprint arXiv:2311.12908, 2023.

[102] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao. Depth anything: Unleashing the
power of large-scale unlabeled data. arXiv preprint arXiv:2401.10891, 2024.

[103] A. S. Luccioni, C. Akiki, M. Mitchell, and Y. Jernite. Stable bias: Analyzing societal repre-
sentations in diffusion models. arXiv preprint arXiv:2303.11408, 2023.

[104] A. Birhane, V. U. Prabhu, and E. Kahembwe. Multimodal datasets: misogyny, pornography,
and malignant stereotypes. arXiv preprint arXiv:2110.01963, 2021.

[105] P. Schramowski, M. Brack, B. Deiseroth, and K. Kersting. Safe latent diffusion: Mitigating
inappropriate degeneration in diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22522–22531, 2023.

15

A RLBench Tasks

We select 25 out of 100 tasks from RLBench [22] for our simulation experiments. Only variation0
is used to reduce training time with limited resources. In the following sections, we describe each
of the 25 tasks in detail, including any modifications from the original codebase.

A.1 Basketball in Hoop

Task: Pick up the basketball and dunk it in the hoop.
filename: basketball in hoop.py

Modified: No.
Success Metric: The basketball goes through the hoop.

A.2 Insert USB in Computer

Task: Pick up the USB and insert it into the computer.
filename: insert usb in computer.py

Modified: No.
Success Metric: The USB tip is inserted into the USB port on the computer.

A.3 Move Hanger

Task: Move the hanger from one rack to another.
filename: move hanger.py

Modified: No.
Success Metric: The hanger is hung on the other rack and the gripper is not grasping anything.

A.4 Open Box

Task: Grasp the lid and open the box.
filename: open box.py

Modified: For the data efficiency experiment in Figure 6, we perform grid sampling of box poses
for both training and evaluation following R&D [49]. A grid size of 5cm×20cm is used, with a yaw
rotation range of 45° around the z axis. All other experiments use the default random sampling.
Success Metric: The joint between the lid and the box is at 90°.

A.5 Open Door

Task: Grip the handle and push the door open.
filename: open door.py

Modified: No.
Success Metric: The door is opened with the door joint at 25°.

A.6 Open Drawer

Task: Open the bottom drawer.
filename: open drawer.py

Modified: No.
Success Metric: The prismatic joint of the button drawer is fully extended.

A.7 Open Grill

Task: Grasp the handle and raise the lid to open the grill.
filename: open grill.py

Modified: No.
Success Metric: The lid joint of the grill cover reaches 50°.

16

A.8 Open Microwave

Task: Pull open the microwave door.
filename: open microwave.py

Modified: No.
Success Metric: The microwave door is open with its joint reaches 80°.

A.9 Open Washer

Task: Pull open the washing machine door.
filename: open washing machine.py

Modified: No.
Success Metric: The washing machine door is open with its joint reaches 40 °.

A.10 Open Window

Task: Rotate the handle to unlock the left window, then open it.
filename: open window.py

Modified: No.
Success Metric: The window is open with its joint reaches 30°.

A.11 Phone On Base

Task: Put the phone on the holder base
filename: phone on base.py

Modified: No.
Success Metric: The phone is placed on the base and the gripper is not holding the phone.

A.12 Pick Up Cup

Task: Pick up the red cup.
filename: pick up cup.py

Modified: No.
Success Metric: The red cup is picked up by the gripper and held within the success region.

A.13 Play Jenga

Task: Take the protruding block out of the Jenga tower without the tower toppling.
filename: play jenga.py

Modified: No.
Success Metric: The protruding block is no longer on the Jenga tower, the rest of the tower remains
standing.

A.14 Press Switch

Task: Flick the switch.
filename: press switch.py

Modified: No.
Success Metric: The switch is turned on.

A.15 Push Button

Task: Push down the maroon button.
filename: push button.py

Modified: No.
Success Metric: The maroon button is pushed down.

17

A.16 Put Books on Shelf

Task: Pick up books and place them on the top shelf.
filename: put books on bookshelf.py

Modified: No.
Success Metric: The books are on the top shelf.

A.17 Put Knife on Board

Task: Pick up the knife and put it on the chopping board.
filename: put knife on chopping board.py

Modified: No.
Success Metric: The knife is on the chopping board and the gripper is not holding it.

A.18 Put Rubbish in Bin

Task: Pick up the rubbish and place it in the bin.
filename: put rubbish in bin.py

Modified: No.
Success Metric: The rubbish is inside the bin.

A.19 Scoop with Spatula

Task: Scoop up the block and lift it up with the spatula.
filename: scoop with spatula.py

Modified: No.
Success Metric: The cube is within the success region, lifted up by the spatula.

A.20 Slide Block to Target

Task: Slide the block towards the green square target.
filename: slide block to target.py

Modified: For the data efficiency experiment in Figure 6, we perform grid sampling of block poses
for both training and evaluation following R&D [49]. A grid size of 15cm × 40cm is used, with a
yaw rotation range of 90° around the z axis. All other experiments use the default random sampling.
Success Metric: The block is in side the green target area.

A.21 Take Lid off Saucepan

Task: Take the lid off the saucepan
filename: take lid off saucepan.py

Modified: For the data efficiency experiment in Figure 6, we perform grid sampling of saucepan
poses for both training and evaluation following R&D [49]. A grid size of 35cm × 44cm is used,
with a yaw rotation range of 90° around the z axis. All other experiments use the default random
sampling.
Success Metric: The lid is lifted off from the saucepan to the success region above it.

A.22 Take Plate off Colored Dish Rack

Task: Take the plate off the black dish rack and leave it on the tabletop.
filename: take plate off colored dish rack.py

Modified: No.
Success Metric: The plate is lifted off the black disk rack and placed within the success region on
the tabletop.

18

A.23 Toilet Seat Up

Task: Lift the lid of the toilet seat to an upright position.
filename: toilet seat up.py

Modified: No.
Success Metric: The lid joint is at 90°.

A.24 Turn on Lamp

Task: Press the button to turn on the lamp.
filename: lamp on.py

Modified: No.
Success Metric: The lamp is turned on by pressing the button.

A.25 Turn Tap

Task: Grasp the left tap and turn it.
filename: turn tap.py

Modified: No.
Success Metric: The left tap is rotated by 90° from the initial position.

B Real-World Tasks

We evaluate on 9 real-world tasks. In the following sections, we describe each of 9 tasks in detail,
including tests we perform to assess out-of-distribution generalization. Figure 8 shows objects and
scene perturbations.

B.1 Lid Off

Task: Take the lid off the saucepan.
In-Distribution: A black saucepan with an oval-shaped lid handle seen during training.
Out-of-Distribution: An unnseen smaller saucepan with a round-shaped lid handle.
Success Metric: The lid is picked up from the saucepan and placed on the right side.

B.2 Place Teddy

Task: Place the teddy into the drawer
In-Distribution: A beige-color teddy bear toy seen during training.
Out-of-Distribution: An unseen blue plush toy.
Success Metric: The toy is inside the drawer.

B.3 Elbow Touch

Task: Touch the red button with the elbow joint.
In-Distribution: The button is placed over a blue cloth seen during training.
Out-of-Distribution: The button is placed over an unseen pink cloth.
Success Metric: The robot touches the button with its elbow joint.

B.4 Hang Scarf

Task: Hang the scarf on the hanger.
In-Distribution: A seen green-and-black checkered scarf seen during training.
Out-of-Distribution: An unseen red checkered scarf with a different thickness.
Success Metric: The scarf hangs still on the lowest peg of the hanger.

19

ID

lid off place teddy elbow press hang scarf flip cup avoid lamp slide book lift bag put marker

OOD

Figure 8. Real task objects.. Photos of objects from in-distribution (ID) and out-of-distribution (OOD) evaluations.

B.5 Put Marker

Task: Put the highlighter into the mug.
In-Distribution: A highlighter and mug seen during training.
Out-of-Distribution: The same highlighter and mug is moved around during execution.
Success Metric: The highlighter is inside the mug.

B.6 Slide Book

Task: Slide the book to the drawer’s edge and pick it up from the side.
In-Distribution: A book seen during training.
Out-of-Distribution: The same book and scene but with darker lighting conditions.
Success Metric: The book is lifted up from the drawer.

B.7 Avoid Lamp

Task: Pick up the sponge and place it inside the drawer without bumping into the obstacle.
In-Distribution: A sponge and lamp (as the obstacle) seen during training.
Out-of-Distribution: The same sponge, but with either cup stand or water bottle as the obstacle.
Success Metric: The sponge is placed into the drawer without bumping into the obstacle.

B.8 Lift Bag

Task: Lift up the plastic bag.
In-Distribution: A plastic bag seen during training.
Out-of-Distribution: The same plastic bag, but placed on distractors of different heights.
Success Metric: The bag is lifted up from the drawer.

B.9 Flip Cup

Task: Pick up the cup, rotate it, and place it in an upright position.
In-Distribution: A plastic wine glass seen during training.
Out-of-Distribution: A unseen ceramic coffee cup.
Success Metric: The cup is standing upright on the drawer.

20

C Hardware Setup

C.1 Simulation

Our simulated experiments use a four-camera setup: front, left shoulder, right shoulder,
and wrist. All cameras are set to default camera poses from RLBench [22] without any modifica-
tions, except for the perturbation tests in Section 3.2.

C.2 Real-Robot

Hardware Setup. Real-robot experiments use a 7-DoF Franka Emika Panda equipped with a
Robotiq 2F-140 gripper. We use four RealSense D415 cameras to capture RGB images. Two
cameras on the end-effector (upper wrist, lower wrist) to provide a wide field-of-view, and
two external cameras (front, right shoulder) that are fixed on the base. We use a TARION
camera mount4 for the right shoulder camera. The extrinsics between the cameras and robot
base-frame are calibrated with the easy handeye package5 in ROS.

Leader

Follower

Figure 9. Joint-mirroring setup used for data-collection.

Data Collection. We collect demonstrations for real-
world tasks using a joint-mirroring setup similar to
ALOHA [23]. Figure 9 shows the data collection setup. A
Leader Franka is moved by the operator and the Follower
Franka mirrors the Leader’s movement in joint space. Vi-
sual observations and joint states are recorded at 30 FPS.
When training controllers, we set the action prediction
horizon to match the data recording frequency to avoid
big jumps or slow trajectory execution.

C.3 Training and Evaluation Hardware

The diffusion agents of GENIMA and SuSIE [13], and the 3D Diffuser Actor [40] baseline were
trained on a single NVIDIA A100 GPU with 80GB VRAM. The controllers were trained on a single
NVIDIA L4 GPU with 24GB VRAM. Evaluation inference for real-world agents was done on an
NVIDIA GeForce RTX 3090 GPU with 24GB VRAM.

D ControlNet Overview

ControlNet [8] is a fine-tuning architecture that preserves the text-to-image capabilities of Stable
Diffusion while following the spatial layout of a conditioning image. ControlNet has achieved com-
pelling results in several image-to-image domains such as sketch-to-image, normal-map-to-image,
depth-to-image, canny-edge-to-image, segmentations-to-image, and human-pose-to-image. Partic-
ularly, the method preserves spatial structures and can be trained on small datasets. This is achieved
through a two-stream architecture similar to prior works like CLIPort [94].

Two-stream architecture. ControlNet’s architecture is composed of two streams: frozen and train-
able. The frozen-stream is a pre-trained copy of Stable Diffusion’s UNet, whose parameters are kept
frozen throughout fine-tuning. The trainable-stream is another copy of the UNet’s downsampling
encoder, whose parameters are fine-tuned. The frozen-stream gets sampled latents, a prompt, and
time embeddings as input. The trainable-stream gets latents of the conditioning image (that is en-
coded with a frozen autoencoder), a prompt, and time embeddings as input. The two streams are
connected through zero-convolution layers where outputs from each layer of the trainable-stream
are added to the decoder layers of the frozen-stream.

4https://amzn.eu/d/7xDDfJH
5https://github.com/IFL-CAMP/easy_handeye

21

https://amzn.eu/d/7xDDfJH
https://github.com/IFL-CAMP/easy_handeye

Zero-convolution connections regulate the flow of information from the trainable-stream to the
frozen-stream. Zero-convolution layers are 1 × 1 convs initialized with zeroed weights and biases.
At the start of the fine-tuning process, the trainable-stream makes no contribution to the final output
because of the zero-intialization. But after fine-tuning, the trainable layers modulate the output to
follow the spatial layout in the conditioning image.

Training Loss. ControlNet is trained with a standard diffusion loss that predicts noise added to a
noise image. This is implemented as an L2-loss on the latents. For more details on the training
process, refer to the original ControlNet paper [8].

E ACT Overview

Action Chunking with Transformers (ACT) [23] predicts action chunks (or sequences) to reduce
the effective horizon of long-horizon tasks. This helps alleviate compounding errors in behavior-
cloning when learning from human demonstrations. The chunk size is fixed at length K. Given an
observation, the model outputs the next K actions to be executed sequentially.

Architecture. Images are encoded with a pre-trained ResNet-18 [47]. The vision features from each
camera and proprioceptive features are then fed into a conditional variational autoencoder (CVAE).
The CVAE consists of a BERT-like [95] transformer encoder and decoder. The encoder takes in
the current joint position and target action sequence to predict the mean and variance of a style
variable z. This style variable z helps in dealing with multi-modal demonstrations. It is only used to
condition the action decoder during training and is discarded at test time by zeroing it out. The action
decoder is based on DETR [34], and is trained to maximize the log-likelihood of action chunks from
human demonstrations using two losses: an action reconstruction loss and a KL regularization term
to encourage a Gaussian prior for z.

Temporal Smoothing. To avoid jerky robot motions, ACT [23] uses temporal ensembling at each
timestep. An exponential weighted scheme wi = exp(−m ∗ i) is applied to obtain a weighted
average of actions from overlapping predictions across timesteps, where w0 is the coefficient for the
oldest action and m controls the speed for incorporating new observations.

Our modifications to ACT. We made several modifications to ACT [23] in our implementation to
improve data-efficiency and robustness:

• Data augmentation: we use random-crops [36], color jitters, elastic transforms and Gaus-
sian noise from Torchvision6. The original ACT [23] does not use any data augmentation.

• Sliding window sampling: we apply a sliding window along each demonstration trajectory
to obtain action chunks. The original ACT [23] samples action chunks sparsely from each
trajectory. The sliding-window ensures full data-coverage every epoch.

• Discrete gripper loss: we use cross entropy loss for gripper open and close actions instead
of an L1-loss. This makes the prediction closer to how the data was collected.

• Temporal ensemble smoothing: we do not use temporal smoothing for our ACT [23] con-
trollers. It oversmoothens trajectories, which reduces precision and recovery behaviors.

• Transformer decoder features: the original implementation conditions action predictions
on only the first decoder layer, leaving some unused layers7. We replace it with the last
decoder feature instead.

6https://pytorch.org/vision/0.15/transforms.html
7https://github.com/tonyzhaozh/act/issues/25

22

https://pytorch.org/vision/0.15/transforms.html
https://github.com/tonyzhaozh/act/issues/25

F Hyperparameters

In this section, we provide training and evaluation hyperparameters for GENIMA and other baselines.
Note that GENIMA’s controller, SuSIE [96], and the ACT [23] baseline all share the same hyperpa-
rameters and augmentation settings for fair one-to-one comparisons. Real-world GENIMA and ACT
agents also use the same hyperparameters (except for the camera setup).

Base Model SD-Turbo [27]
Target K timestep 20
Learning rate 1e−5

Weight decay 1e−2

Epochs 200
Batch size 24
Image size 512× 512 (tiled)
Image augmentation color jitter, random crop

Train scheduler DDPM [66]
Test scheduler Euler Ancestral Discrete [97]
Learning rate scheduler constant
Learning rate warm-up steps 500
Inference diffusion steps 10 (for RLBench)
Joints with rendered spheres base, elbow, wrist, gripper
Sphere radius for each camera
(wrist, front, right, left) 3cm, 8cm, 6.5cm, 6.5cm

Table 3. Diffusion Agent hyperparameters for GENIMA and SuSIE [13].

Backbone ImageNet-trained ResNet18 [47]
Action dimension 8 (7 joints + 1 gripper open)
Cameras wrist, front, right shoulder, left shoulder
Learning rate 1e−5

Weight decay 1e−4

Image size 256× 256

Action sequence K 20
Execution horizon 20
Observation horizon 1
encoder layers 4
decoder layers 6
heads 8
Feedforward dimension 2048
Hidden dimension 256
Dropout 0.1
Epochs 1000
Batch size 96
Temporal ensembling False
Action Normalization zero mean, unit variance

Image augmentation color jitter, random crop,
elastic, and Gaussian noise

Table 4. Controller hyperparameters for GENIMA, SuSIE [13], and ACT [23] baseline.

23

Backbone ImageNet-trained ResNet18 [47]
Noise Predictor UNet [98]
Action Dimension 8 (7 joints + 1 gripper open)
Cameras wrist, front, right shoulder, left shoulder
Learning rate 1e−4

Weight decay 1e−4

Image size 256× 256

Observation horizon 1
Action sequence K 16
Execution horizon 16
Train, test diffusion steps 50, 50
Hidden dimension 512
Epochs 1000
Batch size 128
Scheduler DDPM [66]
Action Normalization [-1, 1]

Image augmentation color jitter, random crop,
elastic, and Gaussian noise

Table 5. Diffusion Policy [24] hyperparameters.

Learning rate 1e−4

Weight decay 5e−4

Action history length 3
Train, test diffusion steps 100
Embedding dimension 120
Training iterations 550000
Batch size 8
Position scheduler scaled linear
Rotation scheduler squared cosine noise
Loss weight w1 30
Loss weight w2 10

Table 6. 3D Diffuser Actor [40] hyperparameters.

G Tiled vs. Non-Tiled Generation

Figure 10 shows an example of tiled vs non-tiled generation. Non-tiled generation only gets one
camera-view input at a time during diffusion. Without the full scene context, non-tiled generation
tends to produce inconsistent and ambiguous predictions like duplicate elbow targets.

Tiled Non-Tiled

Figure 10. Non-tiled generation makes inconsistent predictions like the duplicate el-
bow targets highlighted with red circles on the right.

24

H Base Diffusion Models and Fine-Tuning Pipelines

GENIMA’s formulation is agnostic to the choice of base Stable Diffusion model and also the fine-
tuning pipeline. The SD-Turbo [27] base model used in GENIMA can be replaced with a bigger base
model like SDXL-Turbo [27, 5] that is trained on larger images. Likewise, instead of fine-tuning
with ControlNet [8], we can also use Instruct-pix2pix [7]. See Figure 11 for examples.

SD-Turbo SDXL-Turbo Instruct Pix2Pix

Figure 11. Drawing joint-actions with SD-Turbo [27], SDXL-Turbo [27, 5], and Instruct-pix2pix [7].

I SuSIE Goal Predictions

Figure 12 shows examples of goal images generated by SuSIE [13] with fined-tuned ControlNet [8].
In general, SuSIE struggles to precisely predict pixel-level details of dynamic scenes with complex
object interactions such as turn tap and take plate off.

Input

open grill

take plate off turn tap

turn on lamp

Predicted Goal

Input Predicted Goal Input Predicted Goal

Input Predicted Goal

Figure 12. Examples of goals predicted by SuSIE [13].

25

J Limitations and Potential Solutions

While GENIMA is quite capable, it is not without limitations. In the following sections, we discuss
some of these limitations and potential solutions.

Camera extrinsics during training. To create a fine-tuning dataset, GENIMA relies on calibrated
cameras with known extrinsics to render target spheres. While the calibration process is quick, it
can be difficult to obtain extrinsics for pre-existing datasets or in-the-wild data. A simple solution
could be to use camera pose-estimation methods like DREAM [99]. DREAM takes a single RGB
image of a known robot and outputs extrinsics with comparable error rates to traditional hand-eye
calibration.

Figure 13. Tiled prediction with
virtual robot-state (bottom left).

Robot visibility in observations. One strong assumption our method
makes is that the robot is always visible from some viewpoint in order
to draw actions near joints. This assumption might not always hold,
especially in camera setups with heavy occlusion or wrist-only input. A
potential solution could be to provide a virtual rendering of the robot-
state, which is commonly available from visualization and debugging
tools like RViz8. The virtual rendering can be tiled with observations
such that the diffusion agent can incorporate both the virtual robot-state
and observations. See Figure 13 for an illustration.

Slow speed of diffusion agent. The diffusion agent runs at a consid-
erably lower frequency (5 Hz) than the controller (50 Hz). This makes GENIMA less reactive and
prone to error accumulation. But diffusion speed is unlikely to be a major issue in the future with
rapid-advances from the image-generation community. Recent works like StreamDiffusion [100]
run at 91.07 Hz on a single NVIDIA RTX 4090.

Jerky motions. The actions generated by GENIMA, especially right after generating a new target
image, can sometimes result in jerky motions. This behavior is noticeable for some tasks in the
supplementary videos. Such behavior could be a result of the agent not being trained enough. We
also tried temporal ensembling [23] to smoothen outputs, but this hurt the ability to recover from
mistakes. Future works could experiment with other smoothing techniques.

Controller fails to follow targets. Sometimes the controller visibly fails to reach the target provided
by the diffusion agent. This could be because the controller does not know how to reach the target
from the current state, given its limited training data. One solution could be to pre-train the controller
to reach arbitrary robot-configurations to maximize the workspace coverage.

Object rotations. All RGB-to-joint agents in Section 3.1 struggle with tasks that randomize initial
object poses with a wide-range of rotations. For instance, in phone on base, GENIMA achieves
19%, whereas 3D Diffuser Actor [40] achieves 94%. A small change to the phone’s rotation, re-
sults in widely different trajectories for picking and placing it on the base. This effect could make
behavior-cloning difficult. A potential solution could be to pre-train RGB-to-joint agents on tasks
that involve heavy rotations such that they acquire some rotation-equivariant behavior.

Discovering new behaviors. Like all behavior-cloning agents, GENIMA only distills behaviors
from human demonstrations, and does not discover new behaviors. It might be possible to fine-tune
GENIMA on new tasks with Reinforcement-Learning (RL). Furthermore, advances in preference
optimization [96, 101] for Stable Diffusion models could be incorporated to shape new behaviors.

Hallucinations in predictions. As with any image-generation framework, GENIMA’s diffusion
agent is prone to hallucinating visual artifacts. These hallucinations are limited to joint-action
spheres since the background observations remain unchanged. A potential solution could be to
use a classifier to detect out-of-distribution actions and then execute recovery behaviors.

8https://github.com/ros-visualization/rviz

26

https://github.com/ros-visualization/rviz

K Things that did not work

In this section, we briefly describe things we tried but did not work in practice.

Predicting target spheres at fixed intervals. Instead of predicting spheres continuously at t +K
timesteps, we tried fixed intervals of K e.g., 20, 40, 60 etc. These fixed intervals act as waypoints,
where the spheres hover in place until the target is reached (instead of always being K steps ahead).
In this setting, controllers cannot be trained with random backgrounds, because the trajectory be-
tween fixed intervals is offloaded to the controller without any visual context. So we trained con-
trollers with full context, but found that these controllers tend to ignore target spheres, and directly
use the visual context for predicting actions.

Figure 14. Sphere Octants.

Other sphere shapes and textures. We experimented with a few vari-
ations of target spheres. Our goal was to design simple shapes that are
easy to draw with image-generation models, without having to draw the
full robot with proper links and joints. Figure 14 illustrates an example
in which we made the visual appearance more asymmetric. The sphere’s
surface is divided into octants with different colors and black dots. The
dots indicate gripper open and close actions. But in practice, we found
that a simple sphere with horizontal stripes works the best. Future works
could improve GENIMA’s performance by simply iterating on the tar-
get’s appearance.

Controller with discrete actions. We tried training controllers that output discrete joint actions
similar to RT-2’s [56] discrete end-effector actions. We discretized joint actions into bins. Each
joint has its own prediction head and is trained with cross entropy loss. We found that the discrete
controllers tend to generate smoother trajectories but lacks lack the precision for fine-grained tasks
like manipulating small door handles or pressing tiny buttons.

Figure 15. Depth by DepthAny-
thing [102] from RGB input.

Observations with rendered current joint-states. Instead of just RGB
observations as input to the diffusion agent, we experimented with ren-
dering the current joint-states with spheres as a visual reference. This
led to agents with significantly worse performance, likely due to the in-
put spheres occluding important visual information in the scene.

Segmenting target spheres for the controller. We experimented with
providing binary segmentation masks of the target spheres to the con-
troller. They had a negligible effect on success. Training with random
backgrounds seems sufficient to make the controller focus on targets.

Depth-based ControlNet. We tried conditioning ControlNet on depth input instead of RGB. We
used DepthAnything [102] to generate depth maps from RGB observations as shown in Figure 15.
The performance with depth was worse or comparable to RGB input. Future works could experiment
with fusing RGB and depth-based ControlNets [8].

L Safety Considerations

Real-robot systems controlled with Stable Diffusion [1] requires thorough and extensive safety eval-
uations. Internet pre-trained models exhibit harmful biases [103, 104], which may affect models
fine-tuned for action prediction. This issue is not particular to Stable Diffusion, and even com-
monly used ImageNet-pretrained9 ResNets [47] exhibit similar biases. Potential solutions include
safety guidance [105] and detecting out-of-distribution or inappropriate generations with classifiers
to pause action prediction and ask for human assistance. Keeping humans-in-the-loop with live vi-
sualizations of action predictions, and incorporating language-driven feedback, could further help in
mitigating issues.

9https://excavating.ai/

27

https://excavating.ai/

	Introduction
	Genima
	Diffusion Agent
	Controller

	Experiments
	Visuomotor and 3D Baselines
	Semantic and Spatial Generalization
	Ablations and Sensitivity Analyses
	Real-robot Evaluations

	Related Work
	Conclusion and Limitations
	RLBench Tasks
	Basketball in Hoop
	Insert USB in Computer
	Move Hanger
	Open Box
	Open Door
	Open Drawer
	Open Grill
	Open Microwave
	Open Washer
	Open Window
	Phone On Base
	Pick Up Cup
	Play Jenga
	Press Switch
	Push Button
	Put Books on Shelf
	Put Knife on Board
	Put Rubbish in Bin
	Scoop with Spatula
	Slide Block to Target
	Take Lid off Saucepan
	Take Plate off Colored Dish Rack
	Toilet Seat Up
	Turn on Lamp
	Turn Tap

	Real-World Tasks
	Lid Off
	Place Teddy
	Elbow Touch
	Hang Scarf
	Put Marker
	Slide Book
	Avoid Lamp
	Lift Bag
	Flip Cup

	Hardware Setup
	Simulation
	Real-Robot
	Training and Evaluation Hardware

	ControlNet Overview
	ACT Overview
	Hyperparameters
	Tiled vs. Non-Tiled Generation
	Base Diffusion Models and Fine-Tuning Pipelines
	SuSIE Goal Predictions
	Limitations and Potential Solutions
	Things that did not work
	Safety Considerations

